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Do gamma-ray burst sources repeat ?
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ABSTRACT

Following the discovery by Quashnock & Lamb of an apparent excess of v-ray burst
pairs with small angular separations, we reanalyse the angular distribution of the
bursts in the BATSE catalogue. We find that, in addition to an excess of close pairs,

there is also a comparable excess of antipodal bursts, i.e. pairs of bursts separated by
about 180 ° in the sky. Both excesses are moderately significant. Quashnock & Lamb

argue that the excess of burst pairs with small angular separations is evidence that
many bursts repeat, but obviously this hypothesis cannot explain the excess of

antipodal coincidences. Since the two excesses have similar characteristics, and since
we cannot think of any physical model of bursts that can produce antipodal pairs, we

suggest that both excesses may be due to some unknown selection effect.
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1 INTRODUCTION

In a Letter in this issue, Quashnock & Lamb (1993, hereafter

QL) analyse the distribution of angular separations of bursts

in the publicly available BATSE catalogue of gamma-ray

bursts. They find a significant excess of close pairs of bursts

with angular separations smaller than - 4 °, compared to the

number of such pairs expected for a random distribution of

positions on the sky. On this basis they suggest that 7-ray

bursts repeat. In their hypothesis, the close pairs actually

•arise from the same source, but they are assigned slightly

different positions because of measurement errors, which are

typically about 4 ° or larger. If QL are correct then many

extragalactic models may be ruled out; in particular, the

neutron star merger model (Eichler et al. 1989; Narayan,

Paczyriski & Piran 1992) would become rather unlikely.

Furthermore, as QL argue, their result implies a close

relationship between classical 7-ray bursts and the three

known soft 7-ray repeaters. Since the latter are known to be

located close to or in the Galaxy, this would give further

support to the suggestion that the classical burst sources are

also located in the Galaxy. In view of the importance of these

conclusions, we reanalyse in this Letter the angular distribu-

tion of gamma-ray bursts.

We repeat here the nearest neighbour analysis employed

by QL, and add to it another analysis based on the more

standard angular autocorrelation function. We find that,

while there does appear to be an excess of close pairs of

bursts with angular separations less than 4 ° , as claimed by
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QL, there is also an equivalent excess of antipodal pairs of

bursts with angular separations larger than 176 °. QL explain

the excess of nearby bursts as signals from repeating sources,

but we cannot think of any physical model to explain the

excess of antipodal bursts. Considering the similarity of the

two effects, we conclude that both effects, if real, are

probably due to some unknown selection effect.

In Section 2 of this Letter we analyse the data. We examine

the correlation function of the full sample of 260 bursts in

the BATSE catalogue in Section 2.1, and we present the

nearest and farthest neighbour analysis for this sample in

Section 2.2. QL do not use the full sample, but analyse a

subsample defined by the availability of counts in both the

64-ms and 1024-ms channels on BATSE. Another subset

could be defined by including only those bursts for which the

formal positional accuracy is better than 4 ° . We discuss

results from these subsamples in Section 2.3. We conclude in

Section 3 with a discussion of the implications of the results.

2 ANALYSIS

2.1 The two-point angular correlation function

A data set composed of randomly positioned sources, some

of which repeat, has a simple angular correlation function: a

delta-function peak at the origin due to the repeaters, and a

slightly negative constant elsewhere. Errors in position

measurements will spread out the delta function to a

broadened peak at the origin, with a width and shape

determined by the probability distribution of the positional

errors, but nowhere else other than at the origin do we

expect any significant peak or dip. This simple structure of
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the two-point correlation function suggests that it should be a
clean statistic with which to test the repeating source
hypothesis.

The correlation function of all the 260 bursts in the

BATSE catalogue is shown in Fig. l(a). As expected from the
QL analysis, there is a peak in the bin corresponding to
0 < 4°. To assess the statistical significance of this peak, we
have carried out Monte Carlo simulations with 10000

random samples. From this we estimate that the peak has an
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Figure l. (a) The angular autocorrelation function of the full
sample of 260 bursts in the BATSE catalogue, represented in 4 °
bins. The error bars correspond to one standard deviation as
estimated through Monte Carlo simulations. Note that the antipodal
peak near 0- 180 ° is somewhat higher and wider than the direct
peak near 0-0 °. There are marginally significant negative dips
adjacent to both peaks, and it is plausible that the excess counts in
the peaks are supplied by the lack of bursts in the dips. (b) The
cumulative numbers of nearest neighbours closer than 0 as a
function of 1 - cos 0, and farthest neighbours more distant than 0 as
a function of 1+ cos 0, both shown as thick lines. The theoretically
expected curve for a random sample is shown by the smooth thin
line. Note that the excess extends to larger angles in the case of
farthest neighbours, whereas the KS statistic (i.e. the largest distance
between the observed and theoretical curves) is slightly higher in the
case of nearest neighbours.

amplitude of 1.75 standard deviations (1.75a), and that the
probability of obtaining by chance a peak as strong as or
stronger than the observed one is 0.0957 (9.57 per cent).
These results are given in Table 1, along with the results of
various other calculations discussed later in the paper. Note
that the probability distribution of the values of the correla-

tion function is not Gaussian. Here and elsewhere in the text,
therefore, all significance levels that we quote are obtained
from Monte Carlo simulations. Note also that a small

probability in Table 1 means that it is unlikely that the
particular event could have happened by chance, and there-
fore implies high significance.

While the existence of a peak at 0 < 4° agrees with the QL

result, there is another unexpected peak at the antipode,
corresponding to the bin with 0 > 176 °. The second peak is
slightly wider than the peak at the origin and has an ampli-
tude of 1.86a, which is marginally more significant (prob-
ability=0.0724) than the direct peak. In fact, while the
statistical significance of each of the single peaks is only
moderate, the statistical significance of having both peaks is
much higher. Additionally, there are weak negative excur-
sions in the correlation function at about 0-10°-20 ° and

0 - 160°-170 ° which appear to be marginally significant. We
do not discuss these in detail, but merely note that, if real,
their presence might indicate that the shape of the correlation

function is not consistent with the repeater model.

2.2 Nearest neighbour analysis

Quashnock & Lamb do not employ the correlation function,

but instead use a 'nearest neighbour statistic'. According to
this statistic, they measure for each burst in the catalogue the
angular distance to its nearest neighbour, and compute the
cumulative distribution of this quantity for the observed
sample. They then compare this cumulative with the distribu-
tion expected for a random sample. In Fig. l(b) we present
this comparison for the full sample of 260 bursts. We show
the number of bursts with nearest neighbours closer than an
angle 0 as a function of 1- cos 0. As expected from QL's
analysis and from the correlation function approach
discussed in Section 2.1, there is evidence for an excess of

nearby bursts. Motivated by our discovery of the antipodal
peak in the correlation function, we also calculate for each
burst the distance to its farthest neighbour, that is, the burst
that is nearest to the antipodal point. We plot this cumulative
distribution in Fig. l(b), where now the x-axis is 1 +cos 0
and the vertical axis represents the number of bursts with

farthest neighbour more distant than angle 0. As expected
from the correlation function, we find that there is again an
excess of antipodal bursts compared to the distribution
expected for random bursts. Visually at least, we would say
that the evidence for an excess is about equally strong for
nearest and farthest neighbours.

Table 1. Correlation functions and significance levels.

Sample Number c(< 4 °) Prob

Full Sample 260 0.268 = 1.75a
QL Sample 201 0.389 = 1.95a
Full, A0v < 4° 131 0.254 = 0.84a
QL, AOv _<4 ° 108 0.279 = 0.74a

0.096
0.052
0.423
0.575

c(> 176°)

0.292 = 1.86a
0.348 = 1.74a
0.832 = 2.69a
0.989 = 2.60a

Prob

0.072
0.082
0.010
0.016



Whatis thesignificanceof thesedeviations?SinceFig.
t(b)isacumulativedistribution,onemightconsiderusing
theKolmogorov-Smirnov(KS)testto estimatethesignifi-
cance.InthismethodonemeasurestheKSdistance,whichis
themaximumdistancebetweentheobservedcumulative
curveandthetheoreticallyexpectedcurve.Onethencalcu-
latestheprobabilityofobtainingadistanceatleastaslargeas
theobservedonebythestandardKSmethod(e.g.Pressetal.
1992).TheKSmethod,however,assumesthatallthedata
pointsareindependent,butthisisnotthecaseinthepresent
distributionbecausethesetof nearestneighbourdistances
canhavestrongcorrelations.Toseethis,considerthecase
whentwoburstshappentolieveryclosetoeachotheronthe
sky.Bothburstswillyieldthesamesmallnearestneighbour
distance,andthereforethisdistancewillbecountedtwice.
ThisdemonstratesthatadirectapplicationoftheKS method
is invalid.

To measure correctly the statistical significance of the
deviations, we have generated 10 000 random data sets and
calculated the distribution of the KS distance. We find that

the probabilities of obtaining KS distances greater than those
observed in the 260-burst BATSE sample are 0.012 for the
nearest neighbours and 0.11 for the farthest neighbours.
(Note that the standard KS test gives probabilities of 0.0016
and 0.019, showing that the KS test, by neglecting the effect
of correlations, leads to unduly optimistic estimates of the
significance.) The results are moderately significant. If we
estimate the probability for both nearest and farthest
neighbours to have such large deviations simultaneously, we
find that it is 0.0019, which is more highly significant.
Therefore once again we reach the same conclusion as we
did from the correlation analysis in Section 2.1: namely,
while we find an excess of nearest and farthest neighbours in

the data, these excesses are only moderately significant.
However, the probability of obtaining both excesses simul-
taneously by chance is very small, and therefore the evidence

for such a signal is more significant.

2.3 Subsamples of the BATSE catalogue

The basic variables in our analysis are the positions of the
bursts. As stated in the instructions with the BATSE cata-

logue, burst positions have variable errors depending on the
strengths of the bursts, the position and orientation of the
Compton GRO satellite, and other parameters. The BATSE
catalogue gives an estimate of the formal positional error
A0p for each burst due to Poissonian fluctuations in the
observed _-ray counts, to which an additional systematic
error of 4° should be added in quadrature 1 to yield the total

positional error, A0tot=[A02+(4°)2] U2. In some cases the
estimated A0p is quite large (up to 20°), and it is reasonable
to exclude such bursts from the samples. Since we are
looking for correlations on angular separations -4 °, it is
clearly meaningless to argue that a burst with a positional
error of, say, 10° is within 4 ° from another burst. We have
therefore repeated our analysis with a subsample of bursts
for which the quoted formal A0p values are 4 ° or less (i.e.
A 0to t _ 5.°7). This reduces the sample from 260 bursts to 131
bursts. When we analyse this sample, the correlation analysis
gives a modest peak of 0.84a for 0 < 4 °, and an impressive
peak of 2.690 for antipodal neighbours between 176 ° and

iA0p, 4° and A0to t here correspond to 0_tat,0sy s and 0er r in QL.
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180 °. The corresponding probabilities for chance occurrence
are 0.42 for the direct peak and 0.010 for the antipodal peak
(see Table 1). Similarly, the QL statistic based on the KS

distance gives excesses of 0.830 and 1.61o for nearest and
farthest neighbours, corresponding to chance probabilities of
0.47 and 0.027. The fact that the statistical significance of
the nearest neighbour excess does not increase, but in fact
decreases, when we throw away the bursts with large
positional errors supports our suspicion that the observed
anomaly may not be due to a real physical effect. Further-
more, the peak is very narrow compared to the typical

positional errors in the BATSE catalogue. This shows that
the shape of the nearest neighbour peak is not consistent
with the errors in the positions of the bursts, an argument
that has been given in more detail by Hartmann et al. (1993).

For completeness, we have also repeated the analysis with

the particular subsample used by QL. They divide the data
into subgroups according to the _-ray counts measured in
the 64- and 1024-ms channels. Their total sample, identified
as types I and II in their paper, consists of 201 bursts; we
refer to this as the QL sample. Among all the subsamples
that QL analyse, they find the strongest signal in this
particular combined sample. Using 10000 Monte Carlo
simulations with synthetic data, we find that there is a
probability of 0.0015 of obtaining by chance a nearest
neighbour deviation comparable to the signal observed in the
QL sample. We also find a modest excess of farthest
neighbours in this sample, with a Monte Carlo probability of
0.36. The corresponding peaks in the correlation function
represent deviations at the levels of 1.95 0 and 1.74o respec-
tively (Table 1).

Our final subset is a truncated QL sample of 108 bursts,
where we take the QL sample and eliminate all bursts with
AOp> 4°. The hypothesis of repeating bursts put forward by
QL suggests that, by eliminating bursts with highly uncertain
positions, the statistical significance of the effect should
increase. We find this not to be the case. The angular correla-
tion function for this data set is shown in Fig. 2(a). We see
both the forward and antipodal peaks, but the forward peak
represents only a 0.74 o deviation while the antipodal peak is
at 2.600 (see Table 1 for the corresponding probabilities).
Similarly, we show in Fig. 2(b) the nearest/farthest statistic.
Here we find that the KS distance for the distribution of

nearest bursts is only 0.680 (random chance probability

0.66), while for the farthest bursts the KS distance is 1.24o,
corresponding to a random chance probability of 0.10.

3 SUMMARY AND DISCUSSION

Our primary conclusions are the following.

(i) The BATSE data do contain some evidence for an
excess of pairs of bursts with angular separations smaller
than 4 °. However, there is equally good evidence for an
excess of nearly antipodal pairs, with separations between
176 ° and 180 °. In fact, the two excesses are fairly similar
both in amplitude and in shape. The nearest neighbour
statistic of QL favours the nearest neighbour excess, while
our correlation function analysis finds stronger evidence for
the antipodal peak. Both peaks appear to be about 4 ° wide.

(ii) The individual statistical significances of the two
excesses are moderate (>_20, see Table 1), but, when we
combine the excesses in the forward and antipodal directions
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Figure 2. (a) The angular autocorrelation function of the 108

bursts out of the QL sample that have Poissonian positional errors

AOp-<4 °. Note that the antipodal peak is much stronger than the

direct peak, the latter being practically insignificant. (b) The
cumulative numbers of nearest neighbours as a function of 1 - cos 0

and farthest neighbours as a function of 1 + cos 0, shown as thick

lines. The theoretically expected curve is shown by the thin line.

The nearest neighbour curve is very close to the expected curve,

•whereas the farthest neighbour curve shows an apparently
significant deviation.

inconsistent with the repeater model, given the positional

errors of the bursts. This shape argument has been used by

Hartmann et al. (1993) and others to argue against the QL

model of repeaters.

The main new result in this paper is that there are actually

two independent excesses in the angular correlation function

of gamma-ray bursts: an excess of nearby neighbours within

4 ° (as discovered by QL), and an additional excess of farthest

neighbours ( > 176°). We have been unable to come up with

any physical model that can explain an excess of bursts

within 4 ° of the antipode. Obviously, a population of

repeaters cannot produce this effect. An antipodal excess

may occur if the bursts are located along a narrow line in

space or in a very thin disc. Such distributions, however, are

ruled out by the observed overall isotropy of the positions of

the bursts (Meegan et al. 1992), and inhomogeneities in the

BATSE sky coverage occur on much too wide an angular

scale to produce features with a width of only 4 °.

Considering the strong similarity of the two excesses, we

think that one should seek a common explanation for the two

peaks. Occam's Razor too would argue for a single effect.

Since we have been unable to come up with any physical

model that can produce the antipodal excess, we conclude

that the excess of close pairs of bursts discovered by QL and

the antipodal excess that we discuss here are both caused by

some selection effect, unless they are due to an unusual

statistical fluctuation. We do not have any specific idea as to
the nature of the selection effect.

After we submitted this paper for publication, we became

aware of papers by Hartmann et al. (1993, referred to above)

and Nowak (1994) which discuss the shape of the angular

correlation function of gamma-ray bursts in detail, and

demonstrate that the data are not consistent with a repeater

model. We also received a paper by Maoz (1994), in which

the author has proposed a specific selection effect whereby

the nearest neighbour and antipodal peaks in the correlation

function may arise naturally.

and compute the probability of obtaining both simul-

taneously, we find much higher significance. (Of course, there

are obvious dangers in carefully selecting two hypotheses in

this fashion and combining them.)

(iii) When we eliminate bursts with Poisson positional

errors A 0p > 4 ° (which correspond to total errors A 0to t > 5°7),

far from becoming stronger, the evidence for the excesses

actually becomes weaker. In fact, the decrease in the signal is

quite drastic in the case of nearest neighbour pairs, while it is

more modest for the antipodal pairs. In other words, the

evidence for an excess of close pairs is very volatile, depend-

ing on the particular sample chosen, while the excess of

antipodal pairs shows a little more stability at least within the

tests that we have done (Table 1). Note that bursts with large

A0 e are generally weaker, and one could argue that by

eliminating them we eliminate the repeating weak bursts

(according to the QL model). The large positional error of

the weak bursts, however, means that these bursts should not

have shown any evidence for the repeater model in the first

place. Thus, in general, we conclude that the shapes of the

correlation function and the nearest/farthest statistic are
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